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Asymmetric functionalization of olefinic double bonds is con- Table 1. Mercuriocyclization of 1 Using Dimethylmalonate-Derived
sidered as the prime challenging subject in modern synthetic organicBisoxazoline (L*)—Hg(ll) Complexes

. . o HO . i
chemistry. The most reverend achievements in this area have been o, L", Hg(TFA), LiBHs o =
procured by asymmetric epoxidatiéuljihydroxylation? aminohy- \—/_\-—} CH,Clp, -78°C  Et3B, -78°C /\/\Q

. : : . 1 3
droxylation? hydrogenatiorf,and hydroboratiof Another efficient
installation of versatile functional groups at olefinic double bonds o\><,o RGOS FQ R
has been consummated by intra- and intermolecular electrophile- S/'N pL) RZ}S/N N\eﬁ‘w
promoted addition reactiorfsMost of the stereoselective addition R R R3 R3
reactions have been effected through substrate-controlled diaster- 2a R=Me 2¢ R.RZ=H R®=Ph
eoselectivity. Since reagent-controlled asymmetric addition reactions 2b R=FiPr 2f R, R*=Me R3=Ph

2¢c R=tBu 2g R'R®=Ph R?=H

can be more efficacious and complementary, development of the
corresponding version is of great value and has been arduously.
pursued. The reagent-controlled reactions have been mostly ex- entry L* % yield % ee"

2d R=0-MeOCgH, 2h R,R?=H R®=p-TsOCgH,

ecuted by organoselenylation using chiral selenium reagents 1 2a 76 27 (S)
prepared from binaphthalefegrtho-substituted benzeReferr- g gg gf; Zg

rocene’ and camphor derivativé8.Other rarely explored asym- 4 2e 74 65 (R)
metric addition reactions comprise iodolactonization with iodonium 5 2f 74 49 (R)
ion—dihydroquinine complexed,oxymercuration with chiral Hg(ll) 673 gﬁ ;g gg gg
carboxylated? chlorohydroxylation with Pd(Il-BINAP com- 8 2d 73 18 (S)

plexes!® and iodocyclization with iodine in the presence of chiral a After 12 h, 1 was recovered in 88%.Determined by HPLC analysis
Ti(1V) alkoxides* Among them, the last may belong to substrate- using Regis Whelk-O1 (R,RY.For determination of absolute configuration,

controlled version due to the probable formation of substrethéral see Supporting Information.
Ti(v) aIkQX|de com_plexe_s. Hereln _We de_scr'be_ unprec_edented Table 2. Mercuriocyclization Using Tartrate-Derived Bisoxazoline
asymmetric mercuriocyclization using chiral bisoxazolines as (L*)—Hg(ll) Complexes
ligands to form 2-substituted tetrahydrofurans with high enantio- Ho X
ivi L*, Hg(TFA), _  LiBH,, EtsB, -78°C o
selectivity. . 4, Et3B,
Y R/=\_) CH,Cl,, -78°C _ oraq KBr, then |, RJ\O

It was thought that a chiral environment around Hg(ll) would THE. o°C

be imposed by its complexation with chiral ligands. To achieve a 4 r=(cH,),0TBDPS 7 X=H, R=(CHp);OTBDPS
high degree of enantioselectivity with the chiral complex in  5R=Et 8 X=I, R=Et

. . . . . . . 6 R=n-Pr 9 X=1, R=n-Pr
mercuriocyclization, its coordination bond should be not only tight P
enough to hold Hg(ll) for minimal racemic process but also loose >< R><R
enough to share Hg(ll) with the olefinic double bond for efficient o 0 Q o
cyclization. After screening several kinds of ligands and solvents, o \_o o/ o
bisoxazolines and C}l, were found conformable. A model Q,'N N|‘e Q,'N pLe
substratel was subjected to 1.2 equiv of Hg(Il) complexed with Ph Ph Ph bh
bisoxazolineRa—h (1:1 complexes), followed by in situ reductive

2i 2j R\ R?=Me 2k R',R?=nBu

demercuratiot® to give tetrahydrofurar8. The results are sum-
marized in Table 1. Although the cyclization barely proceeded with
4-tert-butylbisoxazoline2c (entry 3), comparable chemical yields entry substrate L* % yield® % ee”

21 R', R? = Me, Et

were obtained with others. While 4-alkylbisoxazolinga—c 1 1 2i 73(3) 26 R°
resulted in lower % ee (entries-B), the highest % ee was attained g i g’k ;3 4 76 (R)z
. . . i i ® 80R)
with 4-phenylbisoxazolin@e (entry 4)6 Introduction of substituent- 4 4 2k 75 @) 80 R)°
(s) into the 4-phenyl group or the 5-position of oxazoline g g gt gg (g) ggz
deteriorated the enantioselectivity (entries8j. 7 1 2l 77 8 82 R*

Keeping the phenyl groups in bisoxazoline, its framework was = Mai duct thosdFor determination of absolut -
. . _ ajor proauct in parentnes or aetermination of absolute contig-
switched from dimethylmalonate to tartrate. Intramolecular mer uration, see Supporting InformatiohDetermined by HPLC analysis using

curioetherification of substratdsand4—6 were performed using Regis Whelk-O1 (R,R) and DAICEL OD-H.Determined by GC analysis
tartrate-derived bisoxazoline&—I,17 and the generated organo- using CHIRALDEX B-DM. ¢ The absolute configuration was not deter-
mercurials were reductively demercurated or iodinated. The out- Mined:

comes reported in Table 2 reveal thatartrate was mismatched  2j—I improved the enantioselectivity conspicuously. In addition,
with (R)-3-phenylglycinol (entry 1).-Tartrate-derived bisoxazolines  variation of the ketal protecting group affected it to some extent
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Table 3. Mercuriocyclization of 1 Using 4-Naphthylbisoxazoline
(L*)—Hg(ll) Complexes

L*, Hg(TFA), LiBH,4
CH,Cl,, -78°C Et3B, -78°C

o
(o]

Qe

z
b4

&

H >
< S

2m 2n
entry L* % yield % ee
1 2m 74 74 R)
2 2n 75 0 R
3 2n 75 95 R)

a5 equiv of KCOz and 10 equiv of MeOH were added.

Table 4. Mercuriocyclization Using Bisoxazoline 2n—Hg(ll)
Complex (1.2 equiv) in the Presence of K,CO3 (5 equiv) and
MeOH (10 equiv)

1.2n,Hg(TFA), 2.aqKBr X
HO_ ' K,CO3, MeOH _ 3. LiBH,, Et,B,THF,-78°C o.
R/=\_) CH,Cly, -78°C_ orlp, THF, 0°C R
10 R=(CHp);0Tr 15 X=H, R=(CH,);0Tr
11 R=(CH,),0TBDPS 16 X=H, R =(CH,),0TBDPS
12 R=Me 17 X=1, R=Me
13 R=iPr 18 X=1, R=iPr
14 R=/Bu 19 X=1, R=FBu
entry substrate product % yield® % ee®
1 1 3 75 (9) 95 R
2 10 15 72 (13) 95 R)d
3 11 16 68 (20) 86 64
4 12 17 76° 86°f
5 5 8 88 (8) 96t
6 6 9 81 (9) 9zf
7 13 18 91 (16) 8gf
8 14 19 86 (12) 91 R)°Y

apPercentage of recovered sm in parenthesBaie to its volatility, sm
was not recovered.For determination of absolute configuration, see
Supporting Informationd Determined by HPLC analysis using DAICEL
OD-H. ¢ Determined by GC analysis using CHIRALDEX B-DNiThe
absolute configuration was not determinédhe absolute configuration
corresponds to the reductively deiodinated product ®f

(entries 2, 3, and 7). Alkyl chain-containing substrafeand 6
showed inferior stereoselectivity (entries 5 and 6).

Since 2| seemed to be a little better thak in terms of
enantioselectivity and stability, 4-naphthylbisoxazolirss and
2n3b18having a methyl ethyl ketal protecting group were designed
to improve the asymmetric mercuriocyclization bfurther. The
experimental data in Table 3 manifest that 4-(2-naphthyl)bisoxa-
zoline 2n was superior to 4-(1-naphthyl)bisoxazoli@e (entries
1 and 2). When the cyclization was implemented in the presence
of K,CO; and MeOH, even more enhanced enantioselectivity was
accomplished (entry 3). The established cyclization conditions were
applied to variousZ)-olefinic y-hydroxy alkened, 5, 6, and10—

14 to provide excellent results presented in Table 4. Remarkable
enantioselectivity was attained even with alkyl chain-containing
substrate®, 6, and12—14 (entries 4-8). Besides, the ligand was
recovered quantitatively as bisoxazoline {8D%), and a mixture

of mono- and diamide, which could be recycled. Finabiyhy-

2n, Hg(TFA),
TBDPSO\__/—H\O;—> K,COg MeOH  LiBH, .0
- CH,Cl, -78°C  EtsB, -78°C TBDPSO/\/\Q

20 21 (91% ee)

droxyalkene20 was cyclized under the identical conditions to
furnish tetrahydropyra21 in 91% ee and 48% yield along with
41% of recovere@O.

In conclusion, we have developed highly enantioselective mer-
curiocyclization ofy-hydroxy-cis-alkenes employing novel tartrate-
derived 4-(2-naphthyl)bisoxazolirén to produce 2-monosubstituted
tetrahydrofurans up to 95% ee.
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